Step of Proof: eq_int_eq_false_intro
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
eq
int
eq
false
intro
:
1.
i
:
2.
j
:
3.
(
i
=
j
)
(
i
=
j
) = ff
latex
by RW bool_to_propC 0
THEN (Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
TH
)) (first_tok :t) inil_term)
latex
TH
.
Definitions
t
T
,
,
P
&
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
assert
of
eq
int
,
not
functionality
wrt
iff
,
assert
of
bnot
,
eqff
to
assert
,
not
wf
,
bnot
wf
,
assert
wf
,
bfalse
wf
,
eq
int
wf
,
bool
wf
,
iff
transitivity
origin